539 research outputs found

    Pion-Muon Asymmetry Revisited

    Full text link
    Long ago an unexpected and unexplainable phenomena was observed. The distribution of muons from positive pion decay at rest was anisotropic with an excess in the backward direction relative to the direction of the proton beam from which the pions were created. Although this effect was observed by several different groups with pions produced by different means, the result was not accepted by the physics community, because it is in direct conflict with a large set of other experiments indicating that the pion is a pseudoscalar particle. It is possible to satisfy both sets of experiments if helicity-zero vector particles exist and the pion is such a particle. Helicity-zero vector particles have direction but no net spin. For the neutral pion to be a vector particle requires an additional modification to conventional theory as discussed herein. An experiment is proposed which can prove that the asymmetry in the distribution of muons from pion decay is a genuine physical effect because the asymmetry can be modified in a controllable manner. A positive result will also prove that the pion is NOT a pseudoscalar particle.Comment: 9 pages, 3 figure

    Mass Suppression in Octet Baryon Production

    Get PDF
    There is a striking suppression of the cross section for production of octet baryons in e+ee^+ e ^- annihilation, as the mass of the produced hadron increases. We present a simple parametrization for the fragmentation functions into octet baryons guided by two input models: the SU(3) flavor symmetry part is given by a quark-diquark model, and the baryon mass suppression part is inspired by the string model. We need only eight free parameters to describe the fragmentation functions for all octet baryons. These free parameters are determined by a fit to the experimental data of octet baryon production in e+ee^+ e ^- annihilation. Then we apply the obtained fragmentation functions to predict the cross section of the octet baryon production in charged lepton DIS and find consistency with the available experimental data. Furthermore, baryon production in pppp collisions is suggested to be an ideal domain to check the predicted mass suppression.Comment: 20 pages, 5 figure

    Measurement of event shape distributions and moments in e+e- -> hadrons at 91-209 GeV and a determination of alpha_s

    Full text link
    We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).Comment: 63 pages 26 fi

    Searches for Gauge-Mediated Supersymmetry Breaking Topologies in e+e- collisions at LEP2

    Get PDF
    In gauge-mediated supersymmetry (SUSY) breaking (GMSB) models the lightest supersymmetric particle (LSP) is the gravitino and the phenomenology is driven by the nature of the next-to-lightest SUSY particle (NLSP) which is either the lightest neutralino, the stau or mass degenerate sleptons. Since the NLSP decay length is effectively unconstrained, searches for all possible lifetime and NLSP topologies predicted by GMSB models in e+e- collisions are performed on the data sample collected by OPAL at centre-of-mass energies up to 209 GeV at LEP. Results independent of the NLSP lifetime are presented for all relevant final states including direct NLSP pair-production and, for the first time, also NLSP production via cascade decays of heavier SUSY particles. None of the searches shows evidence for SUSY particle production. Cross-section limits are presented at the 95% confidence level both for direct NLSP production and for cascade decays, providing the most general, almost model independent results. These results are then interpreted in the framework of the minimal GMSB (mGMSB) model, where large areas of the accessible parameter space are excluded. In the mGMSB model, the NLSP masses are constrained to be larger than 53.5 GeV/c^2, 87.4 GeV/c^2 and 91.9 GeV/c^2 in the neutralino, stau and slepton co-NLSP scenarios, respectively. A complete scan on the parameters of the mGMSB model is performed, constraining the universal SUSY mass scale Lambda from the direct SUSY particle searches: Lambda > 40, 27, 21, 17, 15 TeV/c^2 for messenger indices N=1, 2, 3, 4, 5 respectively, for all NLSP lifetimes.Comment: 4 pages, 2 figures. To appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Flavour Independent hA Search and Two Higgs Doublet Model Interpretation of Neutral Higgs Boson Searches at LEP

    Full text link
    Upper limits on the cross-section of the pair-production process e+e- -> h0A0 assuming 100% decays into hadrons, are derived from a new search for the h0A0 -> hadrons topology, independent of the hadronic flavour of the decay products. Searches for the neutral Higgs bosons h0 and A0, are used to obtain constraints on the Type II Two Higgs Doublet Model (2HDM(11)) with no CP violation in the Higgs sector and no additional non Standard Model particles besides the five Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL detctor up to the highest available centre-of-mass energies. The searches are sensitive to the h0, A0 -> qq, gg,tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. The 2HDM(II) parameter space is explored in a detailed scan. Large regions of the 2HDM(II) parameter space are excluded at the 95% CL in the (mh, mA), (mh, tanb) and (mA, tanb) planes, using both direct neutral Higgs boson searches and indirect limits derived from Standard Model high precision measurements. The region 1 lesssim mh lesssim 55 GeV and 3 lesssim mA lesssim 63 GeV is excluded at 95% CL independently of the choice of the 2HDM(II) parameters.Comment: 37 pages, 11 figures, Submitted to Eur. Phys. J.

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal
    corecore